Issue 10, 2013

Synthesis and characterization of a novel spirocyclic aromatic derivative: unique roles of phenothiazine

Abstract

In order to investigate the explicit effects of phenothiazine on the general properties of a spirocyclic aromatic derivative with a sterically perpendicular configuration for electro-optical applications, a novel spirocyclic aromatic derivative SPIS, based on fluorene and phenothiazine, was synthesized and fully characterized by 1H NMR, 13C NMR, elemental analysis and matrix assistant laser desorption/ionization time-of-flight mass, respectively. The photophysical properties, thermal stability and energy levels of compound SPIS were further compared with those of 2,7-dibromo-9,9,-diethyl fluorene. The experimental results indicated that compound SPIS displayed a high thermal stability with a decomposition temperature of 386 °C at 5% mass loss and a melting temperature of 221 °C, which was a notable improvement compared to those of 2,7-dibromo-9,9,-diethyl fluorene. Compound SPIS took on a band gap of about 2.63 eV with blue-green emission in the thin solid film. The introduction of phenothiazine into the spirocyclic aromatic derivative can lower the lowest unoccupied molecular orbital level to −3.05 eV, while increasing the highest occupied molecular orbital level to −5.68 eV relative to those of 2,7-dibromo-9,9,-diethyl fluorene. In conclusion, it is obviously illustrated that the introduction of a rigid segment of phenothiazine into the skeleton of a spirocyclic aromatic derivative can improve the thermal stability, and effectively adjust the photophysical properties and energy levels of fluorene-based monomers over a wide range.

Graphical abstract: Synthesis and characterization of a novel spirocyclic aromatic derivative: unique roles of phenothiazine

Supplementary files

Article information

Article type
Paper
Submitted
13 Jun 2013
Accepted
17 Jul 2013
First published
22 Jul 2013

New J. Chem., 2013,37, 3161-3165

Synthesis and characterization of a novel spirocyclic aromatic derivative: unique roles of phenothiazine

H. Jiang and J. Sun, New J. Chem., 2013, 37, 3161 DOI: 10.1039/C3NJ00635B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements