Issue 38, 2013

Amidoxime porous polymers for CO2 capture

Abstract

CO2 capture from fossil fuel based electricity generation remains costly since new power plants with monoethanol amine (MEA) as the scrubbing agent are under construction. Amidoximes are known to mimic MEA, and porous polymers with amidoximes could offer a sustainable solution to carbon capture. Here we report the first amidoxime porous polymers (APPs) where aromatic polyamides (aramids) having amidoxime pendant groups were synthesized through low temperature condensation of 4,4′-oxydianiline (ODA) and p-phenylene diamine (p-PDA) with a new type of nitrile-bearing aromatic diacid chloride. The nitrile pendant groups of the polyamides were converted to an amidoxime functionality by a rapid hydroxylamine addition (APP-1 and APP-2). The CO2 adsorption capacities of these polyamides were measured at low pressure (1 bar) and two different temperatures (273 and 298 K) and high pressure (up to 225 bar – the highest measuring pressure to date) at 318 K. The low pressure CO2 uptake of APP-1 was found to be 0.32 mmol g−1 compared with APP-2 (0.07 mmol g−1) at 273 K, whereas at high pressure they showed a substantial increase in CO2 adsorption capacity exhibiting 24.69 and 11.67 mmol g−1 for APP-1 and APP-2 respectively. Both aramids were found to be solution processable, enabling membrane applications.

Graphical abstract: Amidoxime porous polymers for CO2 capture

Article information

Article type
Paper
Submitted
16 May 2013
Accepted
12 Jul 2013
First published
15 Jul 2013

RSC Adv., 2013,3, 17203-17213

Amidoxime porous polymers for CO2 capture

S. Zulfiqar, S. Awan, F. Karadas, M. Atilhan, C. T. Yavuz and M. I. Sarwar, RSC Adv., 2013, 3, 17203 DOI: 10.1039/C3RA42433B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements