Issue 36, 2013

Enhanced photoelectrocatalytic performance of SnO2/TiO2rutile composite films

Abstract

Ordered rutile TiO2 nanorods grown on transparent electro-conductive F-doped SnO2-coated (FTO) glass substrates were prepared by a simple hydrothermal method using tetrabutyl titanate as the precursor and then calcined at various temperatures. The prepared SnO2/TiO2 composite film samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The photoelectrocatalytic (PEC) activity was evaluated by PEC degradation of methylene blue (MB) aqueous solutions under UV-LED light irradiation. The results showed that rutile TiO2 nanorods with diameters of ca. 300–700 nm and lengths of ca. 5 μm vertically grew on the FTO substrate. The resulting rutile TiO2 arrays exhibited excellent stability upon annealing in a temperature range of 300–500 °C. The sample calcined at 400 °C exhibited the highest PEC activity due to the combined effects of several factors including its one-dimensional morphology, high crystallinity, close contact between the TiO2 nanorods and SnO2 layers, SnO2/TiO2 n–n heterojunction and the applied external electrostatic field. The proposed enhanced PEC mechanism was further confirmed by the transient photocurrent response and electrochemical impedance spectroscopy (EIS) experiments.

Graphical abstract: Enhanced photoelectrocatalytic performance of SnO2/TiO2 rutile composite films

Article information

Article type
Paper
Submitted
07 Jun 2013
Accepted
27 Jun 2013
First published
27 Jun 2013

J. Mater. Chem. A, 2013,1, 10727-10735

Enhanced photoelectrocatalytic performance of SnO2/TiO2 rutile composite films

J. Yu, Y. Wang and W. Xiao, J. Mater. Chem. A, 2013, 1, 10727 DOI: 10.1039/C3TA12218B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements