Issue 1, 2014

Heating and mechanical force-induced luminescence on–off switching of arylamine derivatives with highly distorted structures

Abstract

A triphenylamine-based organic luminophor (TPA-CO) with a highly distorted structure has been designed and effortlessly obtained by an Ullmann reaction. The luminophor exhibits a stimuli-induced emission enhancement effect and intramolecular charge transfer properties. The fluorescence efficiency of its crystals is dramatically increased from 0.4% to 12.3% upon grinding. The emission enhancement is also realized by a heating process. The “bright” state can recover its original state and turn “dark”. The luminescence “on–off” behaviour is repeatedly transformed by a grinding–vapour process or by a heating process. The XRD patterns of the “bright” and “dark” states show that the change of emission intensity is related to the reversible transition between the crystalline state and the metastable amorphous state. At the molecular level, the emission enhancement upon external stimuli may be attributed to conformational planarization and weak intermolecular interactions.

Graphical abstract: Heating and mechanical force-induced luminescence on–off switching of arylamine derivatives with highly distorted structures

Supplementary files

Article information

Article type
Paper
Submitted
22 Jul 2013
Accepted
16 Oct 2013
First published
17 Oct 2013

J. Mater. Chem. C, 2014,2, 195-200

Heating and mechanical force-induced luminescence on–off switching of arylamine derivatives with highly distorted structures

Y. Zhang, J. Sun, G. Zhuang, M. Ouyang, Z. Yu, F. Cao, G. Pan, P. Tang, C. Zhang and Y. Ma, J. Mater. Chem. C, 2014, 2, 195 DOI: 10.1039/C3TC31416B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements