Issue 42, 2015

A DAC tartrate-based gelator system featuring markedly improved gelation properties: enhancing lifetime and functionality of gel networks

Abstract

The delicate interface between gelation and crystallization can be exemplified using a multicomponent gelator solution (MGS-I) consisting of (1R,2R)-1,2-diaminocyclohexane L-tartrate (1) in MeOH (0.128 M) and concentrated HCl (2.4 equiv. with respect to 1). Solubilization of 1 occurs due to an ionic dissociation–exchange process induced by HCl. A transient chloride-containing assembly of 1 in solution, resembling that in its crystalline state, acts as a supramolecular synthon for the growth of gel networks in the presence of different organic solvents at low temperature. These gels have very short lifetimes (ca. 1–72 h in most cases) as a consequence of the thermodynamic formation of insoluble (1R,2R)-1,2-diaminocyclohexane dihydrochloride (2). However, a more robust formulation can be obtained by replacing MeOH with DMSO, which in the presence of HCl provides similar solubilization of diaminocyclohexane (DAC) tartrate salt 1, but it delays the destabilization of solvated supramolecular aggregates. The new formulation (MGS-II) offers a series of major advantages in comparison to MGS-I, such as the formation of homogeneous, transparent and more elastic gels within seconds at room temperature and at much lower concentrations. Moreover, MGS-II has high tolerance to the nature of the dicarboxylic acid derivative, which acts as an extender and a stabilizer of the physical network. Very interestingly, MGS-II can selectively gel solvents in multiphasic systems and can be also combined with warmed solutions of other gelators for the preparation of supramolecular hybrid gel systems with superior properties.

Graphical abstract: A DAC tartrate-based gelator system featuring markedly improved gelation properties: enhancing lifetime and functionality of gel networks

Supplementary files

Article information

Article type
Paper
Submitted
26 Feb 2015
Accepted
31 Mar 2015
First published
03 Apr 2015
This article is Open Access
Creative Commons BY license

CrystEngComm, 2015,17, 8021-8030

A DAC tartrate-based gelator system featuring markedly improved gelation properties: enhancing lifetime and functionality of gel networks

E. Schön, S. Roelens and D. D. Díaz, CrystEngComm, 2015, 17, 8021 DOI: 10.1039/C5CE00397K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements