Issue 1, 2016

Isomorphic metal malonates with N-aminoguanidine: MCo2O4 (M = Ni & Zn) nanoparticle synthesis via a (AmgH)2[M1/3Co2/3(mal)2(H2O)2] precursor solid solution

Abstract

Divalent metal complexes of malonate with aminoguanidine possessing (AmgH)2[M(mal)2(H2O)2] [M = Co (1), Ni (2) or Zn (3); mal = malonate anion and AmgH = aminoguanidinium cation] stoichiometry and their solid solutions, (AmgH)2[Ni0.5Co0.5(mal)2(H2O)2] (4) and (AmgH)2[M1/3Co2/3(mal)2(H2O)2] [where M = Ni (5) or Zn(6)], were prepared and characterized by analytical, thermal and powder X-ray diffraction studies. The crystal and molecular structures of both cobalt and nickel compounds were isomorphic, crystallizing in the triclinic space group P[1 with combining macron]. The complexes exhibit similar modes of endo-followed by exothermic decomposition to produce respective metal oxides below 550 °C. Metal cobaltites, MCo2O4 where M = Ni and Zn, were obtained from the above solid solutions as decomposition residues by heating at 600, 700 and 800 °C in a silica crucible for 3 h. Spinel oxides nanoparticles were characterized by infrared spectra, powder X-ray diffraction patterns, scanning electron microscope coupled with energy dispersive X-ray analysis and transmission electron microscope studies.

Graphical abstract: Isomorphic metal malonates with N-aminoguanidine: MCo2O4 (M = Ni & Zn) nanoparticle synthesis via a (AmgH)2[M1/3Co2/3(mal)2(H2O)2] precursor solid solution

Supplementary files

Article information

Article type
Paper
Submitted
05 May 2015
Accepted
27 Oct 2015
First published
30 Oct 2015

New J. Chem., 2016,40, 257-264

Isomorphic metal malonates with N-aminoguanidine: MCo2O4 (M = Ni & Zn) nanoparticle synthesis via a (AmgH)2[M1/3Co2/3(mal)2(H2O)2] precursor solid solution

R. Selvakumar, S. J. Geib, T. Premkumar, S. Vairam and S. Govindarajan, New J. Chem., 2016, 40, 257 DOI: 10.1039/C5NJ01134E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements