Issue 1, 2016

High electrical conductivity of double-walled carbon nanotube fibers by hydrogen peroxide treatments

Abstract

Double-walled carbon nanotube (DWNT) fibers are of great interest due to their electrical properties and light weight, making them attractive for industrial applications including their potential use in power transmission lines. We present here a detailed study of the mechanism by which hydrogen peroxide (H2O2) treatment improves the electrical transport of DWNT fibers. These fibers were immersed and sonicated in H2O2 for several hours. Experimental results suggest that residual H2O2 could be intercalated within intertube channels inside the bundles of DWNTs, and the oxidation treatment could also result in the removal of small diameter carbon nanotubes (CNTs). In addition, an increase in the fiber density resulted in a decrease of the electrical resistivity. The H2O2 treatment of the DWNT fibers resulted in a metallic-like temperature dependent resistivity behavior with a transition to a semiconducting-like behavior below 30 K. We compared the effects of H2O2 with other well-known solvents and additives commonly used to reduce the carbon nanotube fiber electrical resistivity and found that the electrical conductivity values observed in our study are as good as those obtained with thionyl chloride and iodine additives. The H2O2 method was also used to treat other forms of carbon, where only the multi-walled carbon nanotubes doped with nitrogen exhibited a decrease in electrical resistivity. The fabrication method presented here is simple, efficient and low cost, thus making it an ideal process to be applied in the fabrication of electrically conducting carbon nanotube fibers.

Graphical abstract: High electrical conductivity of double-walled carbon nanotube fibers by hydrogen peroxide treatments

Supplementary files

Article information

Article type
Paper
Submitted
24 Aug 2015
Accepted
28 Oct 2015
First published
29 Oct 2015

J. Mater. Chem. A, 2016,4, 74-82

Author version available

High electrical conductivity of double-walled carbon nanotube fibers by hydrogen peroxide treatments

A. Morelos-Gómez, M. Fujishige, S. Magdalena Vega-Díaz, I. Ito, T. Fukuyo, R. Cruz-Silva, F. Tristán-López, K. Fujisawa, T. Fujimori, R. Futamura, K. Kaneko, K. Takeuchi, T. Hayashi, Y. A. Kim, M. Terrones, M. Endo and M. S. Dresselhaus, J. Mater. Chem. A, 2016, 4, 74 DOI: 10.1039/C5TA06662J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements