Issue 6, 2016

An electropolymerized molecularly imprinted polymer for selective carnosine sensing with impedimetric capacity

Abstract

A chemosensor with a molecularly imprinted polymer (MIP) film as the recognition unit selective to a carnosine biomarker was molecularly engineered, devised and fabricated. The molecular structure of the pre-polymerization complex of the carnosine template with the carboxy and 18-crown-6 ether derivatives of bis(2,2′-bithien-5-yl)methane functional monomers was thermodynamically optimized by density functional theory (DFT) at the B3LYP/6-31g(d) level. The calculated high negative Gibbs free energy change, ΔG = −227.4 kJ mol−1, indicated the formation of a very stable complex. The solution of this complex was prepared and used for deposition of the MIP films on a Pt disk electrode or an Au electrode of the quartz crystal resonator by potentiodynamic electropolymerization. Subsequently, the carnosine template was extracted from the MIPs with 0.1 M NaOH, as confirmed by the differential pulse voltammetry (DPV), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy measurements. For carnosine sensing, impedimetric capacity (IC) measurements were performed under flow-injection analysis (FIA) conditions resulting in the limit of detection of 20 μM (at S/N = 3). This limit implied the readiness of the chemosensor for carnosine determination in clinical samples. Due to multiple modes of carnosine binding to MIP recognition sites, the IC chemosensor was found to be more selective to carnosine than to its common interferences including anserine, carcinine and histidine. Advantageously, the imprinting factor, determined by piezoelectric microgravimetry (PM), was high equaling 14.9.

Graphical abstract: An electropolymerized molecularly imprinted polymer for selective carnosine sensing with impedimetric capacity

Supplementary files

Article information

Article type
Paper
Submitted
29 Oct 2015
Accepted
02 Jan 2016
First published
04 Jan 2016
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. B, 2016,4, 1156-1165

Author version available

An electropolymerized molecularly imprinted polymer for selective carnosine sensing with impedimetric capacity

A. Wojnarowicz, P. S. Sharma, M. Sosnowska, W. Lisowski, T. Huynh, M. Pszona, P. Borowicz, F. D'Souza and W. Kutner, J. Mater. Chem. B, 2016, 4, 1156 DOI: 10.1039/C5TB02260F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements