Issue 14, 2017, Issue in Progress

Cd2SnO4 transparent conductive oxide: a promising alternative candidate for highly efficient hybrid halide perovskite solar cells

Abstract

Organic–inorganic hybrid perovskite solar cells have attracted significant research attention in terms of perovskite materials, fabrication, device architecture, and interfacial engineering to increase their power conversion efficiency (PCE). However, the state-of-the-art front electrode of perovskite solar cells is mainly focused on indium tin oxide (ITO) and fluorine-doped tin oxide (FTO). To further improve the optical characteristics of front electrodes for perovskite devices, it is necessary to explore a new and suitable transparent conductive oxide material. Herein, we introduce a Cd2SnO4 film for constructing a perovskite device with a novel structure. The as-prepared Cd2SnO4 film shows higher optical transmission in the visible region compared to the FTO substrate. The matching energy band alignment can ensure efficient carrier transport and collection between the TiO2 layer and Cd2SnO4 electrode. The higher PCEs with an average of 15.58% under AM 1.5 irradiation for Cd2SnO4-based perovskite solar cells were obtained compared to those of the FTO-based devices. This renders the Cd2SnO4 film a promising transparent conductive oxide candidate for highly efficient perovskite solar cells. However, the toxicity of lead and cadmium components still remain a major concern for its commercial applications.

Graphical abstract: Cd2SnO4 transparent conductive oxide: a promising alternative candidate for highly efficient hybrid halide perovskite solar cells

Supplementary files

Article information

Article type
Paper
Submitted
22 Nov 2016
Accepted
26 Dec 2016
First published
24 Jan 2017
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2017,7, 8295-8302

Cd2SnO4 transparent conductive oxide: a promising alternative candidate for highly efficient hybrid halide perovskite solar cells

D. Liu, S. Ren, X. Ma, C. Liu, L. Wu, W. Li, J. Zhang and L. Feng, RSC Adv., 2017, 7, 8295 DOI: 10.1039/C6RA27146D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements