Issue 11, 2017

Trackable galvanostatic history in phase separation based electrodes for lithium-ion batteries: a mosaic sub-grouping intercalation model

Abstract

An in-depth understanding of electrode reactions is essential to achieve a breakthrough in lithium-ion battery technology, the new ‘engine’ for electric vehicles. Recent studies have continued to reveal unexpected electrode behaviors, providing a more refined view of the operating mechanisms of electrodes from the atomistic to particle level and offering new perspectives to design better battery systems. Herein, it is observed for the first time that the history of applied current densities is memorized in electrode materials that operate via a two-phase reaction and systematically induces a transient galvanostatic profile variation of the electrode. These unforeseen profile changes can be explained by a new proposed intercalation model in which active particle sub-groupings are intermittently generated with a non-uniform chemical potential distribution at the end of charge or discharge. The types of active particle groupings are determined by the current density of the prior charge or discharge, resulting in distinct signatures in the electrochemical profile in the subsequent galvanostatic process. Our proposed intercalation model affords a more comprehensive view of the behavior of electrodes containing many-body particles by elucidating the effect of the applied current densities.

Graphical abstract: Trackable galvanostatic history in phase separation based electrodes for lithium-ion batteries: a mosaic sub-grouping intercalation model

Supplementary files

Article information

Article type
Paper
Submitted
29 Jul 2017
Accepted
18 Sep 2017
First published
18 Sep 2017

Energy Environ. Sci., 2017,10, 2352-2364

Trackable galvanostatic history in phase separation based electrodes for lithium-ion batteries: a mosaic sub-grouping intercalation model

K. Park, J. Hong, W. Seong, J. Kim, K. Ku, B. Lee and K. Kang, Energy Environ. Sci., 2017, 10, 2352 DOI: 10.1039/C7EE02138K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements