Issue 2, 2018

In situ simultaneous photovoltaic and structural evolution of perovskite solar cells during film formation

Abstract

Metal-halide perovskites show remarkably clean semiconductor behaviour, as evidenced by their excellent solar cell performance, in spite of the presence of many structural and chemical defects. Here, we show how this clean semiconductor performance sets in during the earliest phase of conversion from the metal salts and organic-based precursors and solvent, using simultaneous in situ synchrotron X-ray and in operando current–voltage measurements on films prepared on interdigitated back-contact substrates. These structures function as working solar cells as soon as sufficient semiconductor material is present across the electrodes. We find that at the first stages of conversion from the precursor phase, at the percolation threshold for bulk conductance, high photovoltages are observed, even though the bulk of the material is still present as precursors. This indicates that at the earliest stages of perovskite structure formation, the semiconductor gap is already well-defined and free of sub-gap trap states. The short circuit current, in contrast, continues to grow until the perovskite phase is fully formed, when there are bulk pathways for charge diffusion and collection. This work reveals important relationships between the precursors conversion and device performance and highlights the remarkable defect tolerance of perovskite materials.

Graphical abstract: In situ simultaneous photovoltaic and structural evolution of perovskite solar cells during film formation

Supplementary files

Article information

Article type
Paper
Submitted
19 Oct 2017
Accepted
18 Dec 2017
First published
18 Dec 2017
This article is Open Access
Creative Commons BY license

Energy Environ. Sci., 2018,11, 383-393

In situ simultaneous photovoltaic and structural evolution of perovskite solar cells during film formation

M. Alsari, O. Bikondoa, J. Bishop, M. Abdi-Jalebi, L. Y. Ozer, M. Hampton, P. Thompson, M. T. Hörantner, S. Mahesh, C. Greenland, J. E. Macdonald, G. Palmisano, H. J. Snaith, D. G. Lidzey, S. D. Stranks, R. H. Friend and S. Lilliu, Energy Environ. Sci., 2018, 11, 383 DOI: 10.1039/C7EE03013D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements