Issue 8, 2017

3D hierarchical MnO2 microspheres: a prospective material for high performance supercapacitors and lithium-ion batteries

Abstract

3D hierarchical MnO2 microspheres with an ultrathin nanosheet structure and high specific surface area (184.32 m2 g−1) are synthesized by a rapid microwave heating method in just 10 minutes. In this work, an ionic electrolyte (EMIMBF4/DMF) based asymmetric supercapacitor device is successfully prepared by using 3D hierarchical MnO2 microspheres as the cathode and activated carbon as the anode material. The (EMIMBF4/DMF) electrolyte enables a significant enhancement in the potential windows of individual electrode materials and the asymmetric device which results in much improved electrochemical performance. The asymmetric device operates successfully within a potential window of 3.0 V and exhibits an outstanding energy density of 105 W h kg−1 at a power density of 1494 W kg−1 with good cycling life stability (20% loss after 6000 cycles) at a much higher current density of 6 A g−1. Moreover, 3D hierarchical MnO2 microspheres also exhibit an outstanding Li ion storage performance with a discharge capacity of 715 mA h g−1 even after 200 cycles at a current density of 300 mA g−1. The discharge capacity retention (78% @ the 2nd cycle) after 200 cycles at 300 mA g−1 is the highest amongst those of all the reported anode materials based on MnO2. High specific capacities and outstanding cyclability further indicate their strong potential as an anode material for lithium-ion batteries. The promising energy storage applications can be ascribed to the high specific surface area, mesoporous structure and ultrathin nanosheet building blocks of MnO2 microspheres.

Graphical abstract: 3D hierarchical MnO2 microspheres: a prospective material for high performance supercapacitors and lithium-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
03 Jul 2017
Accepted
18 Aug 2017
First published
21 Aug 2017

Sustainable Energy Fuels, 2017,1, 1795-1804

3D hierarchical MnO2 microspheres: a prospective material for high performance supercapacitors and lithium-ion batteries

S. Khalid, C. Cao, M. Naveed and W. Younas, Sustainable Energy Fuels, 2017, 1, 1795 DOI: 10.1039/C7SE00317J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements