Issue 60, 2018

Split-anion solvent extraction of light rare earths from concentrated chloride aqueous solutions to nitrate organic ionic liquids

Abstract

Despite its benefits, the extraction of rare earths (REEs) from chloride solutions with neutral or basic extractants is not efficient, so that separation is currently carried out by using acidic extractants. This work aims to improve this process by replacing the conventional molecular diluents in the organic phase by ionic liquids (ILs) which contain coordinating anions. The extraction of La(III), Ce(III) and Pr(III) from concentrated chloride solutions was tested with a quaternary ammonium and a phosphonium nitrate IL extractant. Dissolution of a trialkylphosphine oxide neutral extractant (Cyanex 923) in the nitrate ILs changed the preference of the organic phase from lighter to heavier REE and increased the overall extraction efficiency and the loading capacity of the organic phase. An increase of the CaCl2 concentration in the feed solution resulted in higher extraction efficiencies, due to a lower activity of water and hence to a poorer hydration of the REE ions. In that respect, chloride ions were not coordinating to the REE ion after extraction from concentrated chloride solutions. To achieve selectivity, one should fine-tune the loading by varying the CaCl2 and/or Cyanex 923 concentrations. Adjustment of the CaCl2 concentration in the feed and stripping solutions is essential for the separation of mixtures of REE. However, and unlike in the case of acidic extractants, no control of equilibrium pH is required. The split-anion extraction offers the possibility to separate mixtures of REEs in different groups without having to change the chloride feed solution. It leads to safer and environmentally friendlier extraction processes by (1) using solvents that are not volatile, not flammable and do no accumulate static electricity, (2) consuming no acids or alkali, (3) easy stripping with water and (4) avoidance to create nitrate-containing effluents.

Graphical abstract: Split-anion solvent extraction of light rare earths from concentrated chloride aqueous solutions to nitrate organic ionic liquids

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
16 Jul 2018
Accepted
27 Sep 2018
First published
10 Oct 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 34754-34763

Split-anion solvent extraction of light rare earths from concentrated chloride aqueous solutions to nitrate organic ionic liquids

M. Regadío, T. Vander Hoogerstraete, D. Banerjee and K. Binnemans, RSC Adv., 2018, 8, 34754 DOI: 10.1039/C8RA06055J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements