Issue 15, 2019

Weak-field coherent control of photodissociation in polyatomic molecules

Abstract

A coherent control scheme is suggested to modify the output of photodissociation in a polyatomic system. The performance of the scheme is illustrated by applying it to the ultrafast photodissociation of CH3I in the A-band. The control scheme uses a pump laser weak field that combines two pulses of a few femtoseconds delayed in time. By varying the time delay between the pulses, the shape of the laser field spectral profile is modulated, which causes a change in the initial relative populations excited by the pump laser to the different electronic states involved in the photodissociation. Such a change in the relative populations produces different photodissociation outputs, which is the basis of the control achieved. The degree of control obtained over different photodissociation observables, like the branching ratio between the two dissociation channels of CH3I yielding I(2P3/2) and I*(2P1/2) and the fragment angular distributions associated with each channel, is investigated. These magnitudes are found to oscillate strongly with the time delay, with the branching ratio changing by factors between two and three. Substantial variations of the angular distributions also indicate that the scheme provides a high degree of control. Experimental application of the scheme to general polyatomic photodissociation processes should be straightforward.

Graphical abstract: Weak-field coherent control of photodissociation in polyatomic molecules

Supplementary files

Article information

Article type
Paper
Submitted
01 Mar 2019
Accepted
18 Mar 2019
First published
18 Mar 2019
This article is Open Access
Creative Commons BY-NC license

Phys. Chem. Chem. Phys., 2019,21, 7885-7893

Weak-field coherent control of photodissociation in polyatomic molecules

A. Serrano-Jiménez, L. Bañares and A. García-Vela, Phys. Chem. Chem. Phys., 2019, 21, 7885 DOI: 10.1039/C9CP01214A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements