Issue 9, 2019

Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity

Abstract

Membranes composed of Polymers of Intrinsic Microporosity (PIMs) have the potential for energy efficient industrial gas separations. Here we report the synthesis and gas permeability data of a series of ultrapermeable PIMs, of two-dimensional chain conformation and based on benzotriptycene structural units, that demonstrate remarkable ideal selectivity for most gas pairs of importance. In particular, the CO2 ultrapermeability and high selectivity for CO2 over CH4, of key importance for the upgrading of natural gas and biogas, and for CO2 over N2, of importance for cost-effective carbon capture from power plants, exceed the performance of the current state-of-the-art polymers. All of the gas permeability data from this series of benzotriptycene-based PIMs are placed well above the current 2008 Robeson upper bounds for CO2/CH4 and CO2/N2. Indeed, the data for some of these polymers fall into a linear correlation on the benchmark Robeson plots [i.e. log(PCO2/PCH4) versus log PCO2 and log(PCO2/PN2) versus log PCO2], which are parallel to, but significantly above, that of the 2008 CO2/CH4 and CO2/N2 upper bounds, allowing their revision. The redefinition of these upper bounds sets new aspirational targets for polymer chemists to aim for and will result in more attractive parametric estimates of energy and cost efficiencies for carbon capture and natural/bio gas upgrading using state-of-the-art CO2 separation membranes.

Graphical abstract: Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity

Supplementary files

Article information

Article type
Paper
Submitted
29 Apr 2019
Accepted
11 Jul 2019
First published
23 Jul 2019
This article is Open Access
Creative Commons BY license

Energy Environ. Sci., 2019,12, 2733-2740

Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity

B. Comesaña-Gándara, J. Chen, C. G. Bezzu, M. Carta, I. Rose, M. Ferrari, E. Esposito, A. Fuoco, J. C. Jansen and N. B. McKeown, Energy Environ. Sci., 2019, 12, 2733 DOI: 10.1039/C9EE01384A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements