Issue 2, 2020

A carbon nanotube–graphene nanoribbon seamless junction transistor

Abstract

The nature and type of intramolecular junctions are very important for nanoelectronics. Here, a new way of fabricating seamless junctions between carbon nanotubes and graphene nanoribbons (GNRs) is demonstrated. Dielectrophoretically aligned multi-walled carbon nanotubes (CNTs) across metal electrodes are etched with an Ar ion beam at low pressure. We show that grounding of metal electrodes plays an important role in the etching of CNTs in contact with the metal electrodes. If electrodes are grounded, that portion of the CNT doesn't get etched due to the discharge of ions through the ground, and CNT to GNR conversion occurs in the gap region between the metal electrodes. Thus produced GNRs have a large aspect ratio of ∼90, and Raman spectroscopy analysis shows that the distance between the defects is ∼65 nm. The CNT–GNR–CNT seamless junctions are ohmic in nature and the transistor shows a current on/off ratio of 27 with a hole mobility of 350 cm2 V−1 s−1.

Graphical abstract: A carbon nanotube–graphene nanoribbon seamless junction transistor

Supplementary files

Article information

Article type
Communication
Submitted
23 Dec 2019
Accepted
17 Jan 2020
First published
30 Jan 2020
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2020,2, 659-663

A carbon nanotube–graphene nanoribbon seamless junction transistor

A. A. Sagade and A. Nyayadhish, Nanoscale Adv., 2020, 2, 659 DOI: 10.1039/C9NA00797K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements