Issue 12, 2020

Lithium and magnesium polymeric electrolytes prepared using poly(glycidyl ether)-based polymers with short grafted chains

Abstract

Recently, poly(allyl glycidyl ether) (PAGE) has attracted great interest as a polymer electrolyte for Li-ion transport with conductivity values well above that of the benchmark polyethylene oxide polymer at temperatures below 60 °C. Here, we prepared lithium and magnesium polyelectrolytes by using two novel PAGE-based matrixes containing thioether and sulfone functionalities located in a short side chain inserted by the chemical post-functionalization of PAGE. The synthesized PAGEs, poly(2-(ethyl thio) propyl glycidyl ether) (PEthioPGE) and poly(2-(ethyl sulfone) propyl glycidyl ether) (PEsulfoPGE), were all amorphous at any temperature with Tg between −80 °C and −30 °C. These polymers were used to formulate electrolytes with different Li and Mg salts. The impact of the side chain, used salt and temperature on the ionic conductivity was studied in detail. Ionic conductivities as high as 5.1 × 10−4 S cm−1 at 90 °C can be achieved using PAGE–LiTFSI and PEthioPGE–LiTFSI, values comparable to that achieved using PEO–LiTFSI with identical salt loading. When LiCl is used, PEthioPGE outperforms all other polymers including PEO with the highest conductivity value at 90 °C (1.1 × 10−5 S cm−1). Moreover, the studied complexes with magnesium salts showed promising ionic conductivities, comparable to those achieved using lithium and up to 4.1 × 10−4 S cm−1 at 90 °C for PAGE–Mg(TFSI)2. The results presented here highlight the possibility of tuning the structures and the complexation properties of poly(glycidyl ether)-based electrolytes towards both lithium and magnesium ions.

Graphical abstract: Lithium and magnesium polymeric electrolytes prepared using poly(glycidyl ether)-based polymers with short grafted chains

Supplementary files

Article information

Article type
Paper
Submitted
17 Nov 2019
Accepted
06 Feb 2020
First published
07 Feb 2020
This article is Open Access
Creative Commons BY-NC license

Polym. Chem., 2020,11, 2070-2079

Lithium and magnesium polymeric electrolytes prepared using poly(glycidyl ether)-based polymers with short grafted chains

M. Viviani, N. L. Meereboer, N. L. P. A. Saraswati, K. Loos and G. Portale, Polym. Chem., 2020, 11, 2070 DOI: 10.1039/C9PY01735F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements