Issue 1, 2020

Revisiting the use of concept maps in a large enrollment general chemistry course: implementation and assessment

Abstract

In an effort to improve student conceptual understanding and help students better connect pre-existing knowledge to new ideas, a concept map assignment was implemented in a first-year college level general chemistry course. This implementation included a quasi-experiment that was carried out in discussion group recitation sections within a third-quarter general chemistry course. Students enrolled in a single section of the course were divided into two groups in which a concept map treatment was compared to a control group that completed short journal entries. Comparison of a concept inventory post-test using an independent samples t-test indicates students in the concept map treatment appear to perform better than the students in the journal control group (t = 2.34, mean difference = 0.844, p < 0.05). However, a multi-variable regression analysis in which the concept inventory post-test scores were compared between the treatment and control groups, while traits related to incoming academic preparation were held constant, suggests there was no significant difference in performance (unstandardized b = 0.222, p = 0.540). The quality of the students’ concept maps was also evaluated and correlated to student performance on the concept inventory, and it appears students who were better at concept mapping made greater gains in conceptual understanding (Pearson's r = 0.295, p < 0.05). When the relationship between the quality of concept mapping and concept inventory post-test was determined while holding constant covariates related to incoming academic preparation, the unstandardized B coefficient was positive, but was not significant at the p = 0.05 level (unstandardized b = 0.215, p = 0.134) This study does not provide unequivocal evidence that a concept map treatment leads to greater gains in conceptual understanding compared to a control population, or that students with better concept mapping skills performed better on the concept inventory instrument. Nevertheless, a template for implementing a concept map assignment in a large enrollment course is provided, and the results presented herein might prompt chemistry instructors to consider including concept map assignments in their instructional toolbox.

Supplementary files

Article information

Article type
Paper
Submitted
26 Feb 2019
Accepted
24 Jun 2019
First published
25 Jun 2019

Chem. Educ. Res. Pract., 2020,21, 37-50

Revisiting the use of concept maps in a large enrollment general chemistry course: implementation and assessment

L. E. Talbert, J. Bonner, K. Mortezaei, C. Guregyan, G. Henbest and J. F. Eichler, Chem. Educ. Res. Pract., 2020, 21, 37 DOI: 10.1039/C9RP00059C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements