Issue 30, 2019

Mechanochemical and slow-chemistry radical transformations: a case of diorganozinc compounds and TEMPO

Abstract

From the green chemistry perspective, molecular solid-state transformations conducted under mild conditions are of great interest and desirability. However, research in this area lacked popularity in the previous century, and thus progressed slowly. In particular, the application of radical reactions in solid-state chemistry has been hampered by several long-standing challenges that are intrinsically associated with the apparent unpredictable nature of radical chemistry. We present a comparative study of model mechanochemical, slow-chemistry and solution radical reactions between TEMPO and homoleptic organozinc compounds (i.e., di-tert-butylzinc and diphenylzinc). In the case of the tBu2Zn/TEMPO reaction system only a dimeric diamagnetic complex [tBuZn(μ-TEMPO*)]2 is obtained in yields slightly varying with the method chosen. In contrast, when TEMPO is mixed with diphenylzinc in a 2 : 1 molar ratio a novel paramagnetic Lewis acid–base adduct [[Ph2Zn(η1-TEMPO)]·TEMPO] is isolated in high yields regardless of the applied methodology. This adduct is also formed in the slow-chemistry process when TEMPO is gently mixed with Ph2Zn in a 1 : 1 molar ratio and left for two weeks at ambient temperature. Within the next week the reaction mixture gives in high yield a diamagnetic dinuclear compound [PhZn(μ-TEMPO*)][PhZn(μ211-TEMPO*)] and biphenyl. The analogous reaction conducted in toluene results in a much lower conversion rate. The reported results open up a new horizon in molecular solid-state radical transformations.

Graphical abstract: Mechanochemical and slow-chemistry radical transformations: a case of diorganozinc compounds and TEMPO

Supplementary files

Article information

Article type
Edge Article
Submitted
21 Mar 2019
Accepted
16 Jun 2019
First published
17 Jun 2019
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2019,10, 7149-7155

Mechanochemical and slow-chemistry radical transformations: a case of diorganozinc compounds and TEMPO

K. Budny-Godlewski, I. Justyniak, M. K. Leszczyński and J. Lewiński, Chem. Sci., 2019, 10, 7149 DOI: 10.1039/C9SC01396B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements