Issue 6, 2020

Selenophosphoramide-catalyzed diamination and oxyamination of alkenes

Abstract

A new selenophosphoramide-catalyzed diamination of terminal- and trans-1,2-disubstituted olefins is presented. Key to the success of this transformation was the introduction of a fluoride scavenger, trimethylsilyl trifluoromethanesulfonate (TMSOTf), to prevent a competitive syn-elimination pathway, as was the use of a phosphoramide ligand on selenium to promote the desired substitution reaction. A screen of catalysts revealed that more electron-rich phosphine ligands resulted in higher yields of the desired product, with selenophosphoramides giving the optimal results. A broad range of substrates and functional groups were tolerated and yields were generally good to excellent. For (E)-1,2-disubstituted olefins, diastereoselectivities were always high, giving exclusively anti products. The conditions were also applied to substrates bearing internal nucleophiles such as esters and carbonates, giving rise to 1,2-aminoesters and cyclic carbonates, respectively.

Graphical abstract: Selenophosphoramide-catalyzed diamination and oxyamination of alkenes

Supplementary files

Article information

Article type
Edge Article
Submitted
22 Oct 2019
Accepted
22 Dec 2019
First published
26 Dec 2019
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2020,11, 1677-1682

Selenophosphoramide-catalyzed diamination and oxyamination of alkenes

J. R. Tabor, D. C. Obenschain and F. E. Michael, Chem. Sci., 2020, 11, 1677 DOI: 10.1039/C9SC05335B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements