Issue 7, 2020

In situ exsolution of Ni particles on the PrBaMn2O5 SOFC electrode material monitored by high temperature neutron powder diffraction under hydrogen

Abstract

NiO has been incorporated into the Pr0.5Ba0.5MnO3−δ perovskite to produce, upon heating under a hydrogen atmosphere, in situ exsolved Ni-catalysts supported on the PrBaMn2O5 anode material. Transmission electron microscopy (TEM) and neutron powder diffraction (NPD) showed that the initial composition obtained by annealing in air at 950 °C consists of two perovskite phases: orthorhombic Pr0.65Ba0.35Mn0.975Ni0.025O3 (S.G. Ibmm, ∼75 wt%) and 2H-hexagonal BaMnO3−δ (S.G. P63/mcm, ∼25 wt%). On heating the two-phase sample under wet hydrogen, MnO particles exsolve at T ∼ 500 °C meanwhile the orthorhombic phase transforms to tetragonal (S.G. I4/mcm) then to cubic (S.G. Pm[3 with combining macron]m) at T ∼ 665 °C. When the temperature approaches 900 °C, the emergence of Ni metal particles was detected in the neutron diffraction patterns meanwhile the two perovskite phases start to transform into a Ni-free layered double perovskite, PrBaMn2O5. In situ real time observation of the structural changes under hydrogen atmosphere provided evidence of the simultaneity of Ni exsolution and phase transformation within our timescale resolution. From quantitative Rietveld analysis, the fraction of exsolved nickel represents the whole amount of Ni introduced in the synthesis. Impedance spectroscopy measurements in a 5% H2/Ar atmosphere show promising electrochemical performance for the Ni-exsolved layered perovskite electrode with a polarization resistance of 0.4 Ω cm2 at 800 °C (0.135 Ω cm2 at 850 °C) without any optimization.

Graphical abstract: In situ exsolution of Ni particles on the PrBaMn2O5 SOFC electrode material monitored by high temperature neutron powder diffraction under hydrogen

Supplementary files

Article information

Article type
Paper
Submitted
14 Sep 2019
Accepted
21 Dec 2019
First published
23 Dec 2019

J. Mater. Chem. A, 2020,8, 3590-3597

In situ exsolution of Ni particles on the PrBaMn2O5 SOFC electrode material monitored by high temperature neutron powder diffraction under hydrogen

M. Bahout, P. B. Managutti, V. Dorcet, A. Le Gal La Salle, S. Paofai and T. C. Hansen, J. Mater. Chem. A, 2020, 8, 3590 DOI: 10.1039/C9TA10159D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements