Issue 2, 2021

Design of PtZn nanoalloy catalysts for propane dehydrogenation through interface tailoring via atomic layer deposition

Abstract

Supported Pt nanoparticles are widely used for the catalytic dehydrogenation of propane to propene. Monometallic Pt catalysts are subject to fast deactivation. A successful strategy for stabilization is alloying Pt with a second metal. In this study, we present a novel approach for the precise formation of bimetallic nanoparticles via tailoring of the interface between metal nanoparticles and the support. An ultra-thin functional layer of ZnO is deposited via atomic layer deposition on SiO2. The supported Pt nanoparticles undergo a phase transformation and form Pt1Zn1 alloy nanoparticles under reductive thermal treatment. The resulting Pt1Zn1 catalyst showed a high and stable selectivity to propene over 12 hours of time on stream. The activity of the Pt1Zn1 catalyst was 1.5 times higher than that of a catalyst of the same composition prepared by incipient wetness impregnation. The nanoalloy formation causes electronic and geometric modification of Pt which reduces side reactions and leads to a stable and active propane dehydrogenation catalyst.

Graphical abstract: Design of PtZn nanoalloy catalysts for propane dehydrogenation through interface tailoring via atomic layer deposition

Supplementary files

Article information

Article type
Paper
Submitted
30 Jul 2020
Accepted
18 Nov 2020
First published
18 Nov 2020
This article is Open Access
Creative Commons BY-NC license

Catal. Sci. Technol., 2021,11, 484-493

Design of PtZn nanoalloy catalysts for propane dehydrogenation through interface tailoring via atomic layer deposition

P. Ingale, K. Knemeyer, P. Preikschas, M. Ye, M. Geske, R. Naumann d'Alnoncourt, A. Thomas and F. Rosowski, Catal. Sci. Technol., 2021, 11, 484 DOI: 10.1039/D0CY01528H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements