Issue 2, 2022

High strength, epoxy cross-linked high sulfur content polymers from one-step reactive compatibilization inverse vulcanization

Abstract

Inverse vulcanization provides a simple, solvent-free method for the preparation of high sulfur content polymers using elemental sulfur, a byproduct of refining processes, as feedstock. Despite the successful demonstration of sulfur polymers from inverse vulcanization in optical, electrochemical, and self-healing applications, the mechanical properties of these materials have remained limited. We herein report a one-step inverse vulcanization using allyl glycidyl ether, a heterobifunctional comonomer. The copolymerization, which proceeds via reactive compatibilization, gives an epoxy cross-linked sulfur polymer in a single step, as demonstrated through isothermal kinetic experiments and solid-state 13C NMR spectroscopy. The resulting high sulfur content (≥50 wt%) polymers exhibited tensile strength at break in the range of 10–60 MPa (70–50 wt% sulfur), which represents an unprecedentedly high strength for high sulfur content polymers from vulcanization. The resulting high sulfur content copolymer also exhibited extraordinary shape memory behavior along with shape reprogrammability attributed to facile polysulfide bond rearrangement.

Graphical abstract: High strength, epoxy cross-linked high sulfur content polymers from one-step reactive compatibilization inverse vulcanization

Supplementary files

Article information

Article type
Edge Article
Submitted
26 Oct 2021
Accepted
11 Dec 2021
First published
15 Dec 2021
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2022,13, 566-572

High strength, epoxy cross-linked high sulfur content polymers from one-step reactive compatibilization inverse vulcanization

S. Park, M. Chung, A. Lamprou, K. Seidel, S. Song, C. Schade, J. Lim and K. Char, Chem. Sci., 2022, 13, 566 DOI: 10.1039/D1SC05896G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements