Issue 4, 2022

A C-to-O atom-swapping reaction sequence enabled by Ni-catalyzed decarbonylation of lactones

Abstract

Advances in site-selective functionalization reactions have enabled single atom changes on the periphery of a complex molecule, but reaction manifolds that enable such changes on the core framework of the molecule remain sparse. Here, we disclose a strategy for carbon-to-oxygen substitution in cyclic diarylmethanes and diarylketones to yield cyclic diarylethers. Oxygen atom insertion is accomplished by methylene and Baeyer–Villiger oxidations. To remove the carbon atom in this C-to-O “atom swap” process, we developed a nickel-catalyzed decarbonylation of lactones to yield the corresponding cyclic diaryl ethers. This reaction was enabled by mechanistic studies with stoichiometric nickel(II) complexes that led to the optimization of a ligand capable of promoting a challenging C(sp2)–O(aryl) reductive elimination. The nickel-catalyzed decarbonylation was applied to 6–8 membered lactones (16 examples, 32–99%). Finally, a C-to-O atom-swapping reaction sequence was accomplished on a natural product and a pharmaceutical precursor.

Graphical abstract: A C-to-O atom-swapping reaction sequence enabled by Ni-catalyzed decarbonylation of lactones

Supplementary files

Article information

Article type
Edge Article
Submitted
13 Dec 2021
Accepted
06 Jan 2022
First published
06 Jan 2022
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2022,13, 1095-1100

A C-to-O atom-swapping reaction sequence enabled by Ni-catalyzed decarbonylation of lactones

Q. H. Luu and J. Li, Chem. Sci., 2022, 13, 1095 DOI: 10.1039/D1SC06968C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements