Issue 11, 2022

Heteroleptic mer-[Cr(NNN)(CN)3] complexes: synthetic challenge, structural characterization and photophysical properties

Abstract

The substitution of three water molecules around trivalent chromium in CrBr3·6H2O with the tridentate 2,2′:6′,2′′-terpyridine (tpy), N,N′-dimethyl-N,N′-di(pyridine-2-yl)pyridine-2,6-diamine (ddpd) or 2,6-di(quinolin-8-yl)pyridine (dqp) ligands gives the heteroleptic mer-[Cr(L)Br3] complexes. Stepwise treatments with Ag(CF3SO3) and KCN under microwave irradiations provide mer-[Cr(L)(CN)3] in moderate yields. According to their X-ray crystal structures, the associated six-coordinate meridional [CrN3C3] chromophores increasingly deviate from a pseudo-octahedral arrangement according to L = ddpd ≈ dpq ≪ tpy; a trend in line with the replacement of six-membered with five-membered chelate rings around CrIII. Room-temperature ligand-centered UV-excitation at 18 170 cm−1 (λexc = 350 nm), followed by energy transfer and intersystem crossing eventually yield microsecond metal-centered Cr(2E → 4A2) phosphorescence in the red to near infrared domain 13 150–12 650 cm−1 (760 ≤ λem ≤ 790 nm). Decreasing the temperature to liquid nitrogen (77 K) extends the emission lifetimes to reach the millisecond regime with a record of 4.02 ms for mer-[Cr(dqp)(CN)3] in frozen acetonitrile.

Graphical abstract: Heteroleptic mer-[Cr(N∩N∩N)(CN)3] complexes: synthetic challenge, structural characterization and photophysical properties

Supplementary files

Article information

Article type
Paper
Submitted
14 Jan 2022
Accepted
17 Feb 2022
First published
17 Feb 2022
This article is Open Access
Creative Commons BY-NC license

Dalton Trans., 2022,51, 4297-4309

Heteroleptic mer-[Cr(NNN)(CN)3] complexes: synthetic challenge, structural characterization and photophysical properties

J. Chong, C. Besnard, C. M. Cruz, C. Piguet and J. Jiménez, Dalton Trans., 2022, 51, 4297 DOI: 10.1039/D2DT00126H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements