Issue 6, 1992

Calculation of the thermodynamic properties of aqueous species at high pressures and temperatures. Effective electrostatic radii, dissociation constants and standard partial molal properties to 1000 °C and 5 kbar

Abstract

Within the framework of the revised HKF (H. C. Helgeson, D. H. Kirkham and G. C. Flowers, Am. J. Sci., 1981, 281, 1249) equations of state (J. C. Tanger IV and H. C. Helgeson, Am. J. Sci., 1988, 288, 19), prediction of the standard partial molal thermodynamic properties of aqueous ions and electrolytes at high pressures and temperatures requires values of the effective electrostatic radii of the ions (re), as well as provision for the temperature and pressure dependence of the relative permittivity of the solvent, H2O. Values of the relative permittivity of H2O, together with the Born functions needed to compute the standard partial molal Gibbs free energy, enthalpy, entropy, heat capacity and volume of solvation were calculated as a function of temperature and density from a modified version of the Uematsu–Franck equation (M. Uematsu and E. U. Franck, J. Phys. Chem. Ref. Data, 1980, 9, 1291). The temperature/pressure dependence of re is described in terms of a solvent function designated by g, which was evaluated in the present study at temperatures and pressures to 1000 °C and 5 kbar by regressing experimental standard partial molal heat capacities and volumes of NaCl reported in the literature together with published dissociation constants for NaClo at supercritical temperatures and pressures using the revised HKF equations of state for aqueous species. The calculated values of re decrease substantially with increasing temperature at constant pressure ⩽2 kbar, and with decreasing pressure at constant temperature [gt-or-equal]400 °C. The equations and parameters summarized below permit calculation of the standard partial molal properties of aqueous species from the revised HKF equations of state over a much more extensive range of temperature than was previously possible.

Article information

Article type
Paper

J. Chem. Soc., Faraday Trans., 1992,88, 803-826

Calculation of the thermodynamic properties of aqueous species at high pressures and temperatures. Effective electrostatic radii, dissociation constants and standard partial molal properties to 1000 °C and 5 kbar

E. L. Shock, E. H. Oelkers, J. W. Johnson, D. A. Sverjensky and H. C. Helgeson, J. Chem. Soc., Faraday Trans., 1992, 88, 803 DOI: 10.1039/FT9928800803

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements