Issue 4, 2011

Design strategies for engineering selectivity in bio-inspired heterogeneous catalysts

Abstract

In an era where the requirement for greener chemical processes is so exigent, the growing need for developing novel routes to environmentally benign and sustainable catalytic procedures is highly desirable. Heterogenising bio-inspired transition-metal complexes on a diverse range of porous supports provides a viable alternative for achieving some of these goals, particularly in terms of reducing waste and by increasing efficiency and selectivity in industrially significant catalytic processes. Choosing an appropriate spatial-restricting support is vital for facilitating enhancements in rate and stereoselectivity, as this plays a pivotal role in optimising the orientation of desired transition-states through varying confinement effects, by utilising a myriad of pore-window apertures for regulating diffusion of organic molecules. The nature of the active site can also be further attuned by adopting an appropriate encapsulation strategy, which could eventually assist in maximising the hydrophilic/hydrophobic character of the support. The nature of the active site and its involvement in the catalytic process can be characterised by using a wide-range of physico-chemcial spectroscopic techniques, which provide valuable insights for drawing mechanistic relationships, which in turn facilitates structure–property correlations.

Graphical abstract: Design strategies for engineering selectivity in bio-inspired heterogeneous catalysts

Article information

Article type
Perspective
Submitted
16 Dec 2010
Accepted
12 Feb 2011
First published
11 Mar 2011

Catal. Sci. Technol., 2011,1, 517-534

Design strategies for engineering selectivity in bio-inspired heterogeneous catalysts

D. J. Xuereb and R. Raja, Catal. Sci. Technol., 2011, 1, 517 DOI: 10.1039/C0CY00088D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements