Issue 11, 2010

Calcium phosphategrowth beneath a polycationic monolayer at the air–water interface: effects of oscillating surface pressure on mineralization

Abstract

The self-assembly of the amphiphilic block copolymer poly(butadiene)-block-poly[2-(dimethylamino)ethyl methacrylate] at the air–water interface and the mineralization of the monolayers with calcium phosphate was investigated at different pH values. As expected for polyelectrolytes, the subphase pH strongly affects the monolayer properties. The focus of the current study, however, is on the effect of an oscillating (instead of a static) polymer monolayer on calcium phosphate mineralization. Monitoring of the surface pressure vs. mineralization time shows that the monolayer is quite stable if the mineralization is performed at pH 8. In contrast, the monolayer at pH 5 shows a measurable decrease of the surface pressure already after ca. 2 h of mineralization. Transmission electron microscopy reveals that mineralization at low pH under constant oscillation leads to small particles, which are arranged in circular features and larger entities with holes of ca. 200 nm. The larger features with the holes disappear as the mineralization is continued in favor of the smaller particles. These grow with time and form necklace-like architectures of spherical particles with a uniform diameter. In contrast, mineralization at pH 8 leads to very uniform particle morphologies already after 2 h. The mineralization products consist of a circular feature with a dark dot in the center. The increasing contrast of the precipitates in the electron micrographs with mineralization time indicates an increasing degree of mineralization vs. reaction time. The study therefore shows that mechanical effects on mineralization at interfaces are quite complex.

Graphical abstract: Calcium phosphate growth beneath a polycationic monolayer at the air–water interface: effects of oscillating surface pressure on mineralization

Article information

Article type
Paper
Submitted
05 Jun 2010
Accepted
16 Aug 2010
First published
13 Sep 2010

Nanoscale, 2010,2, 2440-2446

Calcium phosphate growth beneath a polycationic monolayer at the air–water interface: effects of oscillating surface pressure on mineralization

M. Junginger, K. Bleek, K. Kita-Tokarczyk, J. Reiche, A. Shkilnyy, F. Schacher, A. H. E. Müller and A. Taubert, Nanoscale, 2010, 2, 2440 DOI: 10.1039/C0NR00380H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements