Issue 13, 2011

Application of Nazarov type electrocyclization to access [6,5,6] and [6,5,5] core embedded new polycycles: an easy entry to tetrahydrofluorene scaffolds related to Taiwaniaquinoids and C-nor-Dhomosteroids

Abstract

An easy, efficient and concise approach to tetrahydrofluorene [6,5,6]ABC tricyclic core embedded new polycycles has been achieved under relatively mild and catalytic Nazarov type electrocyclization conditions, using 2 mol% of Sc(OTf)3 in anhydrous DCM (dichloromethane) at room temperature, with high yields. The generality of the reaction has been illustrated by synthesizing diverse polycycles embedded with rare heterotricyclic [6,5,5]ABC skeletons.

Graphical abstract: Application of Nazarov type electrocyclization to access [6,5,6] and [6,5,5] core embedded new polycycles: an easy entry to tetrahydrofluorene scaffolds related to Taiwaniaquinoids and C-nor-Dhomosteroids

Supplementary files

Article information

Article type
Paper
Submitted
18 Oct 2010
Accepted
12 Jan 2011
First published
21 Jan 2011

Org. Biomol. Chem., 2011,9, 4782-4790

Application of Nazarov type electrocyclization to access [6,5,6] and [6,5,5] core embedded new polycycles: an easy entry to tetrahydrofluorene scaffolds related to Taiwaniaquinoids and C-nor-Dhomosteroids

R. Singh and G. Panda, Org. Biomol. Chem., 2011, 9, 4782 DOI: 10.1039/C0OB00892C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements