Issue 46, 2011

The gauge including magnetically induced current method

Abstract

An overview of applications of the recently developed gauge including magnetically induced current method (GIMIC) is presented. The GIMIC method is used to obtain magnetically induced current densities in molecules. It provides detailed information about electron delocalization, aromatic character, and current pathways in molecules. The method has been employed in aromaticity studies on hydrocarbons, complex multi-ring organic nanorings, Möbius twisted molecules, inorganic and all-metal molecular rings and open-shell species. Recent studies on hydrogen-bonded molecules indicate that GIMIC can also be used to estimate hydrogen-bond strengths without fragmentation of the system. Preliminary results are presented on the applicability of GIMIC for investigating current transport in molecules attached to clusters simulating molecular conductivity measurements. Advantages and limitations of the GIMIC method are reviewed and discussed.

Graphical abstract: The gauge including magnetically induced current method

Article information

Article type
Perspective
Submitted
03 Jun 2011
Accepted
23 Aug 2011
First published
12 Sep 2011

Phys. Chem. Chem. Phys., 2011,13, 20500-20518

The gauge including magnetically induced current method

H. Fliegl, S. Taubert, O. Lehtonen and D. Sundholm, Phys. Chem. Chem. Phys., 2011, 13, 20500 DOI: 10.1039/C1CP21812C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements