Issue 2, 2012

QM/MM simulation of liquid water with an adaptive quantum region

Abstract

The simulation of complex chemical systems often requires a multi-level description, in which a region of special interest is treated using a computationally expensive quantum mechanical (QM) model while its environment is described by a faster, simpler molecular mechanical (MM) model. Furthermore, studying dynamic effects in solvated systems or bio-molecules requires a variable definition of the two regions, so that atoms or molecules can be dynamically re-assigned between the QM and MM descriptions during the course of the simulation. Such reassignments pose a problem for traditional QM/MM schemes by exacerbating the errors that stem from switching the model at the boundary. Here we show that stable, long adaptive simulations can be carried out using density functional theory with the BLYP exchange-correlation functional for the QM model and a flexible TIP3P force field for the MM model without requiring adjustments of either. Using a primary benchmark system of pure water, we investigate the convergence of the liquid structure with the size of the QM region, and demonstrate that by using a sufficiently large QM region (with radius 6 Å) it is possible to obtain radial and angular distributions that, in the QM region, match the results of fully quantum mechanical calculations with periodic boundary conditions, and, after a smooth transition, also agree with fully MM calculations in the MM region. The key ingredient is the accurate evaluation of forces in the QM subsystem which we achieve by including an extended buffer region in the QM calculations. We also show that our buffered-force QM/MM scheme is transferable by simulating the solvated Cl ion.

Graphical abstract: QM/MM simulation of liquid water with an adaptive quantum region

Article information

Article type
Paper
Submitted
12 Aug 2011
Accepted
26 Oct 2011
First published
16 Nov 2011

Phys. Chem. Chem. Phys., 2012,14, 646-656

QM/MM simulation of liquid water with an adaptive quantum region

N. Bernstein, C. Várnai, I. Solt, S. A. Winfield, M. C. Payne, I. Simon, M. Fuxreiter and G. Csányi, Phys. Chem. Chem. Phys., 2012, 14, 646 DOI: 10.1039/C1CP22600B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements