Issue 8, 2011

Controlled synthesis of a large fraction of metallic single-walled carbon nanotube and semiconducting carbon nanowire networks

Abstract

Controlled synthesis of both single-walled carbon nanotube and carbon nanowire networks using the same CVD reactor and Fe/Al2O3 catalyst by slightly altering the hydrogenation and temperature conditions is demonstrated. Structural, bonding and electrical characterization using SEM, TEM, Raman spectroscopy, and temperature-dependent resistivity measurements suggest that the nanotubes are of a high quality and a large fraction (well above the common 33% and possibly up to 75%) of them are metallic. On the other hand, the carbon nanowires are amorphous and semiconducting and feature a controlled sp2/sp3 ratio. The growth mechanism which is based on the catalyst nanoisland analysis by AFM and takes into account the hydrogenation and temperature control effects explains the observed switch-over of the nanostructure growth modes. These results are important to achieve the ultimate control of chirality, structure, and conductivity of one-dimensional all-carbon networks.

Graphical abstract: Controlled synthesis of a large fraction of metallic single-walled carbon nanotube and semiconducting carbon nanowire networks

Supplementary files

Article information

Article type
Paper
Submitted
28 Mar 2011
Accepted
12 May 2011
First published
24 Jun 2011

Nanoscale, 2011,3, 3214-3220

Controlled synthesis of a large fraction of metallic single-walled carbon nanotube and semiconducting carbon nanowire networks

Z. J. Han, S. Yick, I. Levchenko, E. Tam, M. M. A. Yajadda, S. Kumar, P. J. Martin, S. Furman and K. Ostrikov, Nanoscale, 2011, 3, 3214 DOI: 10.1039/C1NR10327J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements