Issue 8, 2011

Improving the blood clearance time of 125I labeled Dex-g-PMAGGCONHTyr by copolymerization

Abstract

Dextran graft copolymers, including dextran graft poly(N-methacryloylglycylglycine) copolymers conjugated with polyethylene glycol and tyrosine (Dex-g-PMAGGCONHPEG3k-NHTyr), dextran graft poly(N-(2-hydroxypropyl) methacrylamide-co-N-methacryloylglycylglycine)-tyrosine conjugates (Dex-g-P(HPMA-co-MAGGCONHTyr)), and dextran graft poly(methacrylpolyethylene glycol-co-N-methacryloylglycylglycine)-tyrosine conjugates (Dex-g-P(MPEG-co-MAGGCONHTyr)) were synthesized for the purpose to improve the biodistribution and blood clearance time of ploy(N-methacryloylglycylglycine)-tyrosine conjugates (Dex-g-PMAGGCONHTyr). Dynamic light scattering (DLS) results indicated that no aggregation formed in 0.9% saline solution. The graft copolymers were labeled with 125I and the labeled copolymers are stable in 0.9% saline and 1% BSA of PBS solutions. Pharmacokinetics studies showed that 125I labeled graft copolymer Dex-g-P(HPMA-co-MAGGCONHTyr) had a longer blood clearance time than the others. Biodistribution images confirmed the preferable liver and spleen accumulation at 1 h after injection, and especially for blood tissue, the mean %ID/g value of the PHPMA-modified graft copolymer Dex-g-P(HPMA-co-MAGGCONHTyr) is 7 folds higher than that of Dex-g-PMAGGCONHTyr.

Graphical abstract: Improving the blood clearance time of 125I labeled Dex-g-PMAGGCONHTyr by copolymerization

Supplementary files

Article information

Article type
Paper
Submitted
18 Apr 2011
Accepted
18 May 2011
First published
02 Jun 2011

Polym. Chem., 2011,2, 1872-1878

Improving the blood clearance time of 125I labeled Dex-g-PMAGGCONHTyr by copolymerization

D. Wang, R. Liu, N. Che, Q. Li, Z. Li, Y. Tian, H. Kang, B. Jia and Y. Huang, Polym. Chem., 2011, 2, 1872 DOI: 10.1039/C1PY00168J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements