Issue 18, 2011

Reversible assembly of oppositely charged hairy colloids in water

Abstract

We present an experimental study of the fully reversible assembly of oppositely charged colloidal particles in aqueous solutions. Our polystyrene colloids are charged by a grafted polyelectrolyte brush on their surface and stabilized at all salt concentrations by a neutral adsorbed polymer layer. Below a critical salt concentration oppositely charged colloids form clusters and gels with a fractal nature. The fractal dimension of those aggregates increases with increasing salt concentration. Above the critical salt concentration no aggregation takes place, due to the stabilizing neutral adsorbed polymer. Moreover, the aggregated structures are fully reversible and can be redispersed by simply increasing the salt concentration above the critical concentration. We confirm that time-dependent interaction forces are at the basis of the formation of clusters in the present system by atomic force microscopy measurements as a function of salt concentration and contact time. The force measurements show that the attraction between particles strengthens in time due to interpenetration of the polymer brushes, driven by polyelectrolyte complexation. These particles are a promising step toward a reversible and controlled self-assembling system in water, using colloidal particles as building blocks.

Graphical abstract: Reversible assembly of oppositely charged hairy colloids in water

Supplementary files

Article information

Article type
Paper
Submitted
12 May 2011
Accepted
22 Jun 2011
First published
02 Aug 2011

Soft Matter, 2011,7, 8281-8290

Reversible assembly of oppositely charged hairy colloids in water

E. Spruijt, H. E. Bakker, T. E. Kodger, J. Sprakel, M. A. Cohen Stuart and J. van der Gucht, Soft Matter, 2011, 7, 8281 DOI: 10.1039/C1SM05881A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements