Issue 19, 2012

An electrokinetically tunable optofluidic bi-concave lens

Abstract

This paper numerically and experimentally investigates and demonstrates the design of an optofluidic in-plane bi-concave lens to perform both light focusing and diverging using the combined effect of pressure driven flow and electro-osmosis. The concave lens is formed in a rectangular chamber with a liquid core-liquid cladding (L2) configuration. Under constant flow rates, the performance of the lens can be controlled by an external electric field. The lens consists of a core stream (conducting fluid), cladding streams (non-conducing fluids), and auxiliary cladding streams (conducting fluids). In the focusing mode, the auxiliary cladding stream is introduced to sandwich the biconcave lens to prevent light rays from scattering at the rough chamber wall. In the diverging mode, the auxiliary cladding liquid has a new role as the low refractive-index cladding of the lens. In the experiments, the test devices were fabricated in polydimethylsiloxane (PDMS) using the standard soft lithography technique. Ethanol, cinnamaldehyde, and a mixture of 73.5% ethylene glycol and 26.5% ethanol work as the core stream, cladding streams and auxiliary cladding streams. In the numerical simulation, the electric force acts as a body force. The governing equations are solved by a finite volume method on a Cartesian fixed staggered grid. The evolution of the interface was captured by the level set method. The results show that the focal length in the focusing mode and the divergent angle of the light beam in the diverging mode can be tuned by adjusting the external electric field at fixed flow rates. The numerical results have a reasonable agreement with the experimental results.

Graphical abstract: An electrokinetically tunable optofluidic bi-concave lens

Article information

Article type
Paper
Submitted
25 Apr 2012
Accepted
22 May 2012
First published
24 May 2012

Lab Chip, 2012,12, 3680-3687

An electrokinetically tunable optofluidic bi-concave lens

H. Li, C. Song, T. Dung Luong, N. Nguyen and T. Neng Wong, Lab Chip, 2012, 12, 3680 DOI: 10.1039/C2LC40406K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements