Issue 8, 2012

Rewiring the dynamic interactome

Abstract

Transcriptomics continues to provide ever-more evidence that in morphologically complex eukaryotes, each protein-coding genetic locus can give rise to multiple transcripts that differ in length, exon content and/or other sequence features. In humans, more than 60% of loci give rise to multiple transcripts in this way. Motifs that mediate protein–protein interactions can be present or absent in these transcripts. Analysis of protein interaction networks has been a valuable development in systems biology. Interactions are typically recorded for representative proteins or even genes, although exploratory transcriptomics has revealed great spatiotemporal diversity in the output of genes at both the transcript and protein-isoform levels. The increasing availability of high-resolution protein structures has made it possible to identify the domain–domain interactions that underpin many protein interactions. To explore the impact of transcript and isoform diversity we use full-length human cDNAs to interrogate the protein-coding transcriptional output of genes, identifying variation in the inclusion of protein interaction domains. We map these data to a set of high-quality protein interactions, and characterise the variation in network connectivity likely to result. We find strong evidence for altered interaction potential in nearly 20% of genes, suggesting that transcriptional variation can significantly rewire the human interactome.

Graphical abstract: Rewiring the dynamic interactome

Supplementary files

Article information

Article type
Paper
Submitted
14 Feb 2012
Accepted
30 May 2012
First published
01 Jun 2012

Mol. BioSyst., 2012,8, 2054-2066

Rewiring the dynamic interactome

M. J. Davis, C. J. Shin, N. Jing and M. A. Ragan, Mol. BioSyst., 2012, 8, 2054 DOI: 10.1039/C2MB25050K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements