Issue 1, 2013

Subcellular redistribution and mitotic inheritance of transition metals in proliferating mouse fibroblast cells

Abstract

Synchrotron X-ray fluorescence microscopy of non-synchronized NIH 3T3 fibroblasts revealed an intriguing redistribution dynamics that defines the inheritance of trace metals during mitosis. At metaphase, the highest density areas of Zn and Cu are localized in two distinct regions adjacent to the metaphase plate. As the sister chromatids are pulled towards the spindle poles during anaphase, Zn and Cu gradually move to the center and partition into the daughter cells to yield a pair of twin pools during cytokinesis. Colocalization analyses demonstrated high spatial correlations between Zn, Cu, and S throughout all mitotic stages, while Fe showed consistently different topographies characterized by high-density spots distributed across the entire cell. Whereas the total amount of Cu remained similar compared to interphase cells, mitotic Zn levels increased almost 3-fold, suggesting a prominent physiological role that lies beyond the requirement of Zn as a cofactor in metalloproteins or messenger in signaling pathways.

Graphical abstract: Subcellular redistribution and mitotic inheritance of transition metals in proliferating mouse fibroblast cells

Article information

Article type
Paper
Submitted
03 Sep 2012
Accepted
14 Nov 2012
First published
04 Dec 2012

Metallomics, 2013,5, 52-61

Spotlight

Advertisements