Issue 48, 2012

1,5-(H, RO, RS) shift/6π-electrocyclic ring closure tandem processes on N-[(α-heterosubstituted)-2-tolyl]ketenimines: a case study of relative migratory aptitudes and activating effects

Abstract

A number of N-aryl ketenimines, substituted at the ortho position either with different non-cyclic acetalic functions (acetals, monothioacetals, dithioacetals) or with only one alkoxymethyl or (alkylthio)methyl group, have been prepared and submitted to thermal treatment in toluene solution. Under smooth heating the ketenimines bearing non-cyclic acetals converted into 3,4-dihydroquinolines following two competitive tandem sequences that involve the alternative 1,5 migration of a hydride or alkoxy group as the first mechanistic step, followed by subsequent 6π electrocyclic ring closure. The heterocumulenes bearing acyclic monothioacetal and dithioacetal functions converted via a unique consecutive process involving the selective migration of the alkanethiolate group. Ketenimines bearing only one ether or thioether group transformed exclusively by the tandem sequence initiated by a 1,5 hydride shift. All these transformations provided as final reaction products a variety of quinoline derivatives with a range of substitution patterns. From these experiments the following order of propensity to migration can be extracted: RS > RO > H. It was also possible to estimate the following order of relative activating activities: RO > RS > H.

Graphical abstract: 1,5-(H, RO, RS) shift/6π-electrocyclic ring closure tandem processes on N-[(α-heterosubstituted)-2-tolyl]ketenimines: a case study of relative migratory aptitudes and activating effects

Supplementary files

Article information

Article type
Paper
Submitted
16 Oct 2012
Accepted
29 Oct 2012
First published
29 Oct 2012

Org. Biomol. Chem., 2012,10, 9523-9537

1,5-(H, RO, RS) shift/6π-electrocyclic ring closure tandem processes on N-[(α-heterosubstituted)-2-tolyl]ketenimines: a case study of relative migratory aptitudes and activating effects

M. Alajarín, B. Bonillo, R. Orenes, M. Ortín and A. Vidal, Org. Biomol. Chem., 2012, 10, 9523 DOI: 10.1039/C2OB27010B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements