Issue 4, 2013

Brookite versus anatase TiO2 photocatalysts: phase transformations and photocatalytic activities

Abstract

Titanium dioxide nanoparticles consisting of pure anatase, anatase-rich, brookite-rich, and pure brookite modifications were synthesized and characterized by X-ray diffraction, field emission-scanning electron microscopy and nitrogen adsorption. The phase transformations among the three modifications of TiO2 (anatase, brookite, and rutile) and the photocatalytic activities of these nanoparticles were investigated by heat treatment over the temperature range from 400 to 800 °C and by the photooxidation of methanol, respectively. Direct transformation of anatase and brookite to rutile was observed, while in the case of the anatase–brookite mixture, anatase transforms firstly to brookite and then to rutile. The photocatalytic activity measurements indicate that brookite nanoparticles exhibit higher photocatalytic activities than anatase, and a comparable activity to that of the anatase-rich nanoparticles. The phase transformations and photocatalytic results are discussed regarding their dependence on crystallite size, surface area, and phase composition.

Graphical abstract: Brookite versus anatase TiO2 photocatalysts: phase transformations and photocatalytic activities

Article information

Article type
Paper
Submitted
26 Jun 2012
Accepted
09 Aug 2012
First published
10 Aug 2012

Photochem. Photobiol. Sci., 2013,12, 602-609

Brookite versus anatase TiO2 photocatalysts: phase transformations and photocatalytic activities

T. A. Kandiel, L. Robben, A. Alkaim and D. Bahnemann, Photochem. Photobiol. Sci., 2013, 12, 602 DOI: 10.1039/C2PP25217A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements