Issue 1, 2014

Structure effect of carbon nanovectors in regulation of cellular responses

Abstract

Carbon nanostructures such as multiwalled carbon nanotubes (CNT) and graphene (G) are potential candidates in a large number of biomedical applications. However, there is limited understanding and connection between the physicochemical properties of diverse carbon nanostructures and biological systems, particularly with regard to cellular responses. It is also crucial to understand how the structure and surface composition of carbon nanostructures affect the cellular internalization process. Here, through in vitro cellular entry kinetics and cytotoxicity studies using MCF-7 breast cancer cells and H460 human lung cancer cells, we show that the structure and surface composition of CNT and G conjugates with various molecules such as PAMAM dendrimers (G4) and G4-poly(ethylene glycol) (PEG) are directly related to their cellular internalization ability and toxicity. Interestingly, the cellular association of CNT and G nanoconjugates was observed to be structure and surface composition dependent. We found that CNT conjugates internalized more compared to G conjugates. Furthermore, G4 conjugated CNT internalized more compared to G4-PEG conjugated CNT, whereas, higher internalization was found for G4-PEG conjugated G than G4 conjugated G. We have also correlated the cytotoxicity and cellular uptake mechanisms of CNT, G, and their conjugates through zeta potential measurements, fluorescence quenching studies and by fluorescence-activated cell sorting. Altogether these studies suggest different biological activities of the carbon nanostructures, with the shape and surface composition playing a primary role.

Graphical abstract: Structure effect of carbon nanovectors in regulation of cellular responses

Supplementary files

Article information

Article type
Paper
Submitted
30 Mar 2013
Accepted
12 Jul 2013
First published
21 Aug 2013

Biomater. Sci., 2014,2, 57-66

Structure effect of carbon nanovectors in regulation of cellular responses

S. S. Banerjee, A. Jalota-Badhwar, P. Wate, S. Asai, K. R. Zope, R. Mascarenhas, D. Bhatia and J. Khandare, Biomater. Sci., 2014, 2, 57 DOI: 10.1039/C3BM60082C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements