Issue 4, 2014

Spectroscopy of single nanocrystals

Abstract

As colloidal semiconductor nanocrystals are developed for a wider range of diverse applications, it becomes more important to gain a deeper understanding of their properties in order to direct synthetic efforts. While most synthetic developments are guided by changes in ensemble properties, certain applications such as those in nano-electronics and nano-photonics rely on properties of nanocrystals at the individual level. For such applications and even for a more detailed understanding of the ensemble behavior, single nanocrystal spectroscopy becomes a vital tool. This review looks at how single nanocrystal spectroscopy has been applied to materials based on modern synthetic techniques and how these studies are elucidating properties that remain hidden at the ensemble level. First, recent theoretical models that are important for understanding many observed phenomena are explored. Then the review highlights new insights into many of the photophysical properties that are of interest in semiconductor nanocrystal materials, such as the ubiquitous spectral instability, magneto-optical identification of the band-edge exciton fine structure, emission from multi-excitons, and the spectroscopic properties of charged nanocrystals that challenge long standing theories on photoluminescence blinking behavior. To date most of the research has been conducted on materials based on cadmium selenide primarily due to its many years of development as a prototypical nanocrystal system. The review ends with a discussion of new materials that would also benefit from a detailed photophysical understanding afforded by single nanocrystal spectroscopy.

Graphical abstract: Spectroscopy of single nanocrystals

Article information

Article type
Review Article
Submitted
19 Jun 2013
Accepted
23 Sep 2013
First published
14 Oct 2013

Chem. Soc. Rev., 2014,43, 1311-1337

Spectroscopy of single nanocrystals

M. J. Fernée, P. Tamarat and B. Lounis, Chem. Soc. Rev., 2014, 43, 1311 DOI: 10.1039/C3CS60209E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements