Issue 25, 2013

A different route to functional polyolefins: olefin–carbene copolymerisation

Abstract

Copolymerisation of carbenes and olefins (ethene), mediated by Rh-based catalyst precursors, is presented as a new, proof-of-concept methodology for the controlled synthesis of functional polymers. The reactions studied show that olefincarbene polymerisation reactions provide a viable alternative to more traditional olefin polymerization techniques. RhIII-catalyst precursors, while active in the homopolymerisation of either olefins or carbenes, proved to be virtually inactive in olefincarbene copolymerization. Conversely, the use of RhI(cod) catalyst precursors allows the synthesis of high molecular-weight, highly functionalized copolymers. The reactions yield a mixture of copolymers and some carbene homopolymers, which proved to be difficult to separate. Polyethylene was not formed under the applied reaction conditions. The average ethene content in this mixture could be increased up to 11%, although analysis of the mixture revealed that the ethene content in fractions of the copolymer mixture can be as high as 70%. Attempts to increase the ethene content by increasing the ethene pressure unexpectedly led to lower average ethene contents, which is most likely due to changes in the ratio of copolymers vs. carbene homopolymer. This behaviour is most likely a result of the reactivity difference of different active Rh-species formed under the applied reaction conditions. Apparently, higher ethene concentrations slow down the copolymerisation process (mediated by yet unidentified Rh-species) compared to the formation of homopolymers (mediated by different Rh-catalysts; most likely (allyl)RhIII-alkyl species), thereby changing the product ratio in favour of the homopolymer. The average ethene content in the copolymer mixture therefore decreases, while the ethene content within the copolymer fraction has likely increased at higher ethene concentrations (but simply less copolymer is formed). The obtained copolymers exhibit a blocky microstructure, with the functional blocks being highly stereoregular. Branching does occur and the functional groups are present in the polymer backbone as well as at the branches. Formation of copolymers was confirmed by Maldi-ToF analysis, which revealed incorporation of several ethene units into the copolymers.

Graphical abstract: A different route to functional polyolefins: olefin–carbene copolymerisation

Supplementary files

Article information

Article type
Paper
Submitted
07 Dec 2012
Accepted
14 Jan 2013
First published
16 Jan 2013
This article is Open Access

Dalton Trans., 2013,42, 9058-9068

A different route to functional polyolefins: olefincarbene copolymerisation

N. M. G. Franssen, J. N. H. Reek and B. de Bruin, Dalton Trans., 2013, 42, 9058 DOI: 10.1039/C3DT32941K

This is an Open Access article. The full version of this article can be posted on a website/blog, posted on an intranet, photocopied, emailed, distributed in a course pack or distributed in Continuing Medical Education (CME) materials provided that it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements