Issue 10, 2013

Productive sugar isomerization with highly active Sn in dealuminated β zeolites

Abstract

A water-tolerant Lewis acid catalyst was synthesized by grafting SnIV in isopropanol under reflux onto dealuminated zeolites with the BEA (β) topology. This synthesis method allows the production of highly active Snβ-type catalysts without the need for long hydrothermal syntheses or hydrogen fluoride, while using cheap Sn-precursors, industrially available β zeolites and standard catalyst synthesis unit operations. Extensive characterization of the best catalyst shows highly dispersed Sn in the zeolite matrix (XRD, 29Si MAS NMR and 1H MAS NMR) without the formation of SnO2 (XRD and UV-Vis). The catalyst was tested for the model isomerization of sugars such as glucose to fructose. The catalytic activity proved to be purely heterogeneous and the catalyst was recycled and reused without significant loss in activity. Isomerization productivities above 4 kg product per kg of catalyst per hour are reported with appreciably low Sn loadings, corresponding to exceptionally high turnover frequencies, viz. 500 cycles per Sn per hour at 110 °C, which surpass the activity per Sn of the original hydrothermally synthesized Snβ.

Graphical abstract: Productive sugar isomerization with highly active Sn in dealuminated β zeolites

Article information

Article type
Paper
Submitted
25 Jun 2013
Accepted
02 Aug 2013
First published
02 Aug 2013

Green Chem., 2013,15, 2777-2785

Productive sugar isomerization with highly active Sn in dealuminated β zeolites

J. Dijkmans, D. Gabriëls, M. Dusselier, F. de Clippel, P. Vanelderen, K. Houthoofd, A. Malfliet, Y. Pontikes and B. F. Sels, Green Chem., 2013, 15, 2777 DOI: 10.1039/C3GC41239C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements