Issue 8, 2013

Collaborative effects of electric field and fluid shear stress on fibroblast migration

Abstract

Cells are inherently exposed to a number of different biophysical stimuli such as electric fields, shear stress, and tensile or compressive stress from the extracellular environment in vivo. Each of these biophysical cues can work simultaneously or independently to regulate cellular functions and tissue integrity in both physiological and pathological conditions. Thus, it is vital to understand the interaction of multiple stimuli on cells by decoupling and coupling the stimuli in simple combinations and by investigating cellular behaviors in response to these cues. Here, we report a novel microfluidic platform to apply the combinatorial stimulation of an electric field and fluid shear stress by controlling two directional cues independently. An integrated microfluidic platform was developed using soft lithography to monitor the cellular migration in real-time in response to an electric field and fluid shear stress in single, simultaneous, and sequential modes. When each of these stimulations is applied separately, normal human dermal fibroblasts migrate toward the anode and in the direction of fluid flow in a dose-dependent manner. Simultaneous stimulation with an electric field and shear stress, which mimics a wound in vivo, enhances the directional migration of fibroblasts by increasing both directedness and trajectory speed, suggesting the plausible scenario of cooperation between two physical cues to promote wound healing. When an electric field and shear stress are applied sequentially, migration behavior is affected by the applied stimulation as well as pre-existing stimulating conditions. This microfluidic platform can be utilized to understand other microenvironments such as embryogenesis, angiogenesis and tumor metastasis.

Graphical abstract: Collaborative effects of electric field and fluid shear stress on fibroblast migration

Supplementary files

Article information

Article type
Paper
Submitted
10 Nov 2012
Accepted
29 Jan 2013
First published
30 Jan 2013

Lab Chip, 2013,13, 1602-1611

Collaborative effects of electric field and fluid shear stress on fibroblast migration

S. Song, H. Han, U. H. Ko, J. Kim and J. H. Shin, Lab Chip, 2013, 13, 1602 DOI: 10.1039/C3LC41240G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements