Issue 2, 2014

Complete reconfiguration of dendritic gold

Abstract

The present work extends the directed electrochemical nanowire assembly (DENA) methodology, which is a technique for growing single crystalline metallic nanowires and nano-dendrites from simple salt solutions, to enable the complete dissolution of the metallic dendrites following their growth. The experimental parameters that control this process are the frequency and the duty cycle of the alternating voltage signal that initiates electrochemical dendritic growth. Cyclic voltammetric and Raman measurements imply that the reconfiguration of dendritic gold occurs by way of the same interfacial reduction and oxidation mechanisms as bulk gold. We present a model that illustrates how the experimental parameters (frequency and duty cycle) induce reconfiguration by controlling the rates at which reduction, oxidation, and AuIIICl4 diffusion take place. This capability is significant because in making dendritic solidification a reconfigurable process, we have established an innovative means of applying fully reconfigurable metallic nano-structures to substrates; in turn, this capability could potentially enable the smart modulation of the adhesive, anti-corrosive, or optical properties of the substrate.

Graphical abstract: Complete reconfiguration of dendritic gold

Supplementary files

Article information

Article type
Paper
Submitted
16 Aug 2013
Accepted
04 Nov 2013
First published
21 Nov 2013

Nanoscale, 2014,6, 833-841

Complete reconfiguration of dendritic gold

G. Paneru and B. N. Flanders, Nanoscale, 2014, 6, 833 DOI: 10.1039/C3NR04317G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements