Issue 4, 2015

Synthesis of robust hierarchically porous zirconium phosphate monolith for efficient ion adsorption

Abstract

Hierarchically porous monolithic materials are advantageous as adsorbents, catalysts and catalyst supports due to the better accessibility of reactants to the active sites and the ease of recycle and reuse. Traditional synthetic routes, however, have limitations in designing hierarchical porosity as well as the mechanically stable monolithic shape in inorganic phosphate materials, which are useful as adsorbents and catalysts. We present a low-temperature, one-step liquid phase synthesis of hierarchically porous zirconium phosphate (ZrP) monoliths with tunable compositions (from Zr(HPO4)2 (Zr : P = 1 : 2) to NaSICON (Na super ionic conductor)-type ZrP (Zr : P = 1 : 1.5)) as well as macropore size (from 0.5 to 5 μm). The as-synthesized ZrP monolith with a high reactive surface area (600 m2 g−1) and relatively high mechanical strength (Young's modulus 320 MPa) was applied to ion adsorption. A simple syringe device inserted tightly with the ZrP monolith as a continuous flow setup was demonstrated to remove various toxic metal ions in aqueous solutions, which shows promising results for water purification.

Graphical abstract: Synthesis of robust hierarchically porous zirconium phosphate monolith for efficient ion adsorption

Supplementary files

Article information

Article type
Paper
Submitted
07 Oct 2014
Accepted
19 Nov 2014
First published
20 Nov 2014

New J. Chem., 2015,39, 2444-2450

Author version available

Synthesis of robust hierarchically porous zirconium phosphate monolith for efficient ion adsorption

Y. Zhu, T. Shimizu, T. Kitajima, K. Morisato, N. Moitra, N. Brun, T. Kiyomura, K. Kanamori, K. Takeda, H. Kurata, M. Tafu and K. Nakanishi, New J. Chem., 2015, 39, 2444 DOI: 10.1039/C4NJ01749H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements