Issue 32, 2014

Director/barycentric rotation in cholesteric droplets under temperature gradient

Abstract

When a chiral liquid crystal is given a transport current, a unidirectional molecular motion is known to take place, which is called the Lehmann effect. In this paper, we study the mysterious heat-current-driven Lehmann effect using two types of hemispherical cholesteric droplets using polarizing, reflecting, confocal and fluorescent microscopies. Both the droplets, coexisting with the isotropic phase and contacting on a glass substrate, are characterized by the concavo–convex modulated surface and the inside orientational helix. Further, the only difference between them is the helical axis direction; i.e., one is perpendicular and the other is parallel to the substrate. Under the temperature gradient perpendicular to the substrate, the droplet whose helical axis is parallel to the heat current exhibited pure director rotation, while that with the axis perpendicular to the current rotated independently as a rigid body. In the two droplets, the rotational conversion efficiency from the temperature gradient into the angular velocity showed very different dependences on the chirality strength and on the droplets' size, suggesting that the rotations of the two droplets may be driven by independent torques with different origins. This is the first observation that the cholesteric droplets under the temperature gradient exhibit the two rotational modes, the pure director rotation and the molecular barycentric motion, which can be switched to each other by changing the heat-current direction parallel and perpendicular to the helical axis.

Graphical abstract: Director/barycentric rotation in cholesteric droplets under temperature gradient

Supplementary files

Article information

Article type
Paper
Submitted
27 Mar 2014
Accepted
25 Apr 2014
First published
01 May 2014

Soft Matter, 2014,10, 5869-5877

Director/barycentric rotation in cholesteric droplets under temperature gradient

J. Yoshioka, F. Ito, Y. Suzuki, H. Takahashi, H. Takizawa and Y. Tabe, Soft Matter, 2014, 10, 5869 DOI: 10.1039/C4SM00670D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements