Issue 34, 2014

Multifunctional polymer composite with excellent shear stiffening performance and magnetorheological effect

Abstract

A novel multi-functional polymer composite (MPC) with both excellent shear stiffening (ST) performance and magnetorheological (MR) effect is prepared by dispersing magnetic particles into shear stiffening polymer matrix. Besides having the magnetically dependent mechanical properties (MR effects), this multi-functional MPC automatically changes its rheological behavior in response to external shear stimuli. The mechanical properties of this smart composite can be alternatively achieved by varying the particle's types and contents. Upon applying a shear stress with excitation frequency from 1 Hz to 100 Hz, the storage modulus (G′) of the MPC increases from 102 to 106 Pa, demonstrating an excellent ST effect. Interestingly, the ST effects of the MPC are also tunable by varying the external magnetic field, and the area of G′ could be greatly increased and precisely controlled. Based on the experimental results, a possible mechanism is proposed and discussed. It is believed that the “cross bonds” and the particle chains induced by the magnetic field are due to the excellent multi-functional stimulus-response properties.

Graphical abstract: Multifunctional polymer composite with excellent shear stiffening performance and magnetorheological effect

Article information

Article type
Paper
Submitted
02 May 2014
Accepted
06 Jul 2014
First published
11 Jul 2014

J. Mater. Chem. C, 2014,2, 7133-7140

Author version available

Multifunctional polymer composite with excellent shear stiffening performance and magnetorheological effect

S. Wang, W. Jiang, W. Jiang, F. Ye, Y. Mao, S. Xuan and X. Gong, J. Mater. Chem. C, 2014, 2, 7133 DOI: 10.1039/C4TC00903G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements