Issue 6, 2016

Synthesis, X-ray characterization, DFT calculations and Hirshfeld surface analysis of thiosemicarbazone complexes of Mn+ ions (n = 2, 3; M = Ni, Cd, Mn, Co and Cu)

Abstract

Two new pyridine-based heterocyclic thiosemicarbazone ligands and their Ni(II), Cd(II), Mn(II), Co(III) and Cu(II) complexes have been synthesized and characterized by structural, analytical and spectroscopic methods. The monodeprotonated anionic forms of the ligands coordinate in a tridentate fashion via two nitrogen and one sulphur donor atoms to yield seven complexes in which metal centres vary from four-coordinated square planar to six-coordinated distorted octahedral geometries. Single-crystal X-ray crystallography showed that the molecular complexes can aggregate into larger entities depending on the anion coordinated to the metal centre. We have analysed the interesting supramolecular assemblies observed in the solid state of some complexes by means of DFT calculations. These assemblies are formed by a combination of several noncovalent interactions, including chelate ring–π, π–π, and chalcogen bonding interactions, that have been characterized using Bader's Theory of “atoms-in-molecules”.

Graphical abstract: Synthesis, X-ray characterization, DFT calculations and Hirshfeld surface analysis of thiosemicarbazone complexes of Mn+ ions (n = 2, 3; M = Ni, Cd, Mn, Co and Cu)

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
03 Dec 2015
Accepted
05 Jan 2016
First published
05 Jan 2016

CrystEngComm, 2016,18, 1009-1023

Author version available

Synthesis, X-ray characterization, DFT calculations and Hirshfeld surface analysis of thiosemicarbazone complexes of Mn+ ions (n = 2, 3; M = Ni, Cd, Mn, Co and Cu)

G. Mahmoudi, A. Castiñeiras, P. Garczarek, A. Bauzá, A. L. Rheingold, V. Kinzhybalo and A. Frontera, CrystEngComm, 2016, 18, 1009 DOI: 10.1039/C5CE02371H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements