Issue 3, 2020

Detection of microplastics using inductively coupled plasma-mass spectrometry (ICP-MS) operated in single-event mode

Abstract

The occurrence of microplastics in many, if not all environmental compartments is a matter of increasing concern and deserves proper attention. However, there is still a lack of analytical tools for straightforward monitoring of these tiny plastic particles at environmentally relevant levels in water. Inductively coupled plasma-mass spectrometry (ICP-MS) operated in single-particle mode (SP-ICP-MS) was demonstrated to be a powerful technique for the characterization of metallic nanoparticles, but to the best of the authors' knowledge, SP-ICP-MS has not yet been evaluated for the purpose of detection of microplastics and their quantitative determination (particle number density). In this work, spherical polystyrene microspheres of 1 and 2.5 μm – to mimic microplastics coming from plastic waste – have been detected using ICP-MS. The approach developed relies on the ultra-fast monitoring of transient signals (with a dwell time of 100 μs) when using a quadrupole-based ICP-MS unit in the so-called single-event mode and registering the signal spikes produced by individual microparticles by monitoring the signal intensity at a mass-to-charge ratio (m/z) of 13 (13C+). The accuracy of the number-based concentration results (particle number densities) has been assessed by comparing the number of events detected when monitoring 13C+ to those detected when monitoring 165Ho+ for 2.5 μm lanthanide-doped polystyrene beads. Additionally, the results obtained for both polystyrene microspheres in terms of size (most frequently occurring intensity of the signal distribution) compare well with the size as determined using electron microscopy. ICP-MS operated in single-event mode thus allows information on both the size distribution and mass concentration of microplastics to be obtained. As this approach makes use of instrumentation already available in many routine labs analyzing environmental samples, it can enable these labs to analyze microplastics by using their instrument in single-event mode.

Graphical abstract: Detection of microplastics using inductively coupled plasma-mass spectrometry (ICP-MS) operated in single-event mode

Article information

Article type
Communication
Submitted
09 Nov 2019
Accepted
04 Dec 2019
First published
04 Dec 2019

J. Anal. At. Spectrom., 2020,35, 455-460

Detection of microplastics using inductively coupled plasma-mass spectrometry (ICP-MS) operated in single-event mode

E. Bolea-Fernandez, A. Rua-Ibarz, M. Velimirovic, K. Tirez and F. Vanhaecke, J. Anal. At. Spectrom., 2020, 35, 455 DOI: 10.1039/C9JA00379G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements